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An algorithm for the determination of the functional dependence of temperature 
on a spatial coordinate and of thermal conductivity and the linear thermal ex- 
pansion coefficient is proposed. 

INTRODUCTION 

In recent years various modifications of the least-squares method have been widely 
used to analyze experimental data [1-4]. Some treatments emphasize the development of 
the least-squares method for treating nonlinear problems, in which a priori information 
regarding the covariant matrix is used in order to obtain a stable solution [2]. 

The second approach, the main result of which was described by Lybanon [4], emphasizes 
account for the error in all measured quantities as its principal goal. The traditional 
least-squares method, which is often used in practice, is implicitly based on the hypothesis 
that the observed quantity is measured without an error. This hypothesis leads to biased 
estimates of the determined parameters [3]. Even though the main ideas behind this approach 
were analyzed between 1969 and 1982 in a number of articles [3-6], it was not widely put 
into practice for analyzing thermophysical measurement data and for solving the problem 
of determinacy. 

The goals of the present work include the analysis and numerical implementation of 
such an algorithm for analyzing experimental data in which the errors in measuring both 
temperature and a spatial coordinate are taken into account. The problem is examined on 
the example of an experimental investigation of thermal conductivity by the stationary 
radial heat flow method, also known as the cylinder method [7]. 

I. Data Analysis Algorithm. In considering the placement of temperature-sensitive 
elements on the sample, one must take into account the labor intensity of this process 
as well as the distorting influence of the measuring instrument on the temperature field. 
For those reasons it is most efficient to adopt such variants of the measurement scheme 
in which the number of thermocouples is the minimum number consistent with the required 
reliability of the obtained results. 

It is possible to increase the accuracy of determining the desired characteristics 
either by increasing the number of parameters of single-type functions (for example, poly- 
nomials) or by expanding the function set while retaining a limited number of parameters. 

The first method is used primarily when there is a large number of measurements. Here, 
nevertheless, low-order polynomials which are as a rule not higher than fifth or sixth 
order are used. Increasing the polynomial order any further might lead to ill-conditioned 
systems of normal equations and, ultimately, to a loss of accuracy. 

The second method may be efficiently used with comparatively small amounts of experi- 
mental data, which is the case in the stationary cylinder and plate methods. 

In order to solve the posed problem of finding temperature fields, we propose to use 
a set of reciprocal functions, such as those given in Table i. The possibility of using 
both the di=ect and the inverse functions to describe the recovered interdependence of 
temperature and spatial coordinates is conditioned upon the strict monotonic character of 
T(r) [or r(T)] for the majority of investigated data. We note that the number of functions 
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TABLE 2. Recovery of the Thermal Linear Expansion Coefficient 

d i , m 

Ti, degrees 

E~perimental values 

1,000 

1,2 

1,002 

202,0 

1,004 

397,0 

1,006 

590,0 

Method 

Least-squares method 

Modified method 

Exact dependence 

Formula for the 
temp., T dependence 
on sample length d 

T = 3,574 "4- 98361 In d 

T = 1,1 "4" 100046,99 In d 

T = 1 ,O -I- 100000,0 In d 

Coeff. 
'~ x 10 -6 , 
I / deg  

10,17 

9,9953 

10,00 

Relative 
error~ % 

6Td 6~ 

75 1,7 

6 0,05 

0 0 

in Table 1 is not limited to twenty-two. For example, for n = -2, -i, i, 2; m = 0, i, 
e, 5, i0; b = 10 -3 , 2"10-3; C = 103 , 2-103 , the general number of variants is equal to 
148. The main idea behind the modification of the least-squares method (also known as 
the effective dispersion method [3]) is based on the minimization of the following sum: 

N 

S = "~" [~T~ (r~ - -  r (•o, .- . ,  a~, Ti ) )  2 + 

i = 1  

§ W h (T~ - -  T (ao, ..., ah, riD"], 

(i) 

where Wri and WTi are assigned a priori values. The principal difficulty of this method - 

as well as that developed by Lybanon [4] - is in finding the correct method for determining 

Wri and WTi. 

An alternative variant for finding the best function for the table of experimental 
data is based on the minimization of the sum of squares of relative errors in the tempera- 
ture and the radial coordinate: 

N 

X ( a o  . . . .  , a,~)= % ~ { [ ( r l - - r ( a o  . . . . .  a;~, Ti))lril2 + 
i=1  (2) 

§ [ ( T i - - T ( o o  . . . .  , a k ,  r ~ ) ) / T i ] ~ } .  

Here, in order to take into account the errors of all the measured quantities, it is not 
necessary to assign or calculated, by a complex method, weight coefficients which stand in 
front of the squares of the differences between the tabulated and calculated values. The 
roles of such coefficients are played by the table values of r i and T i. Jeffreys [3] sug- 
gested that the minimization of the nonlinear functional, Eq. (i), may not always be ad- 
vantageous due to a poor choice of initial approximations for the unknown parameters or 
due to the divergence of the Newton method [8]. 

In order to avoid such difficulties in using the algorithm for the minimization of 
the sum of squares of relative errors, Eq. (2), we propose to use reciprocal functions 
with one linearizable member. 

The procedure for minimizing Eq. (2) is as follows. At the beginning, for the first 
functions T(a0 ..... ak, r) or r(aG ..... ak, T) chosen from Table i, we determine ag ~ 
.... ak (~ by using the usual least-squares method. Next, using the standard procedure - 
for example, the gradient descent method - we minimize the total sum of squares of relative 
errors, Eq. (2); as initial approximations for the unknown parameters, we propose to use 
the already found a~ ~ ..... a~~ After each step in the approach to the minimum (or after 
a small number of such steps), the following conditions are checked: Is the limit on the 
number of steps in the approach toward the desired minimum)exceeded?( Does the value of 
the root-mean-square of the sum of relative errors V~-~J ..... a k J)/(2N) approach an 
a priori assigned level corresponding to the instrumental error: 
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TABLE 3. Temperature Dependence of Thermal Conductivity for 
the Temperature Fields in Table i 

Function no. 
from Table I X (T) 

1 

" 2 

3 

4 

5 

6 

7 

8 

9 

i0 

I1 

!2 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

( r____?-, 
~'n \ T n ]  

( T I " - i  

(:!_ : - '  
Xtt k Tn / 

( T I~--' 

~.~ ( r )  ~-x exp 

ao + alT n .) 

ao + oIT n 

. ao + alT~ ) 

ao + alT n 

a T n ) ao 21- 1 Fl 

ao + alT n 

exp (b (T n - -  T~))(ao + al exp ((bT)n)) 

(ao + al exp ((bT)n)) 

((b (T n - -  Tn)))(ao q- ai 'exp ( ~  (br)n)) 

T~ -1 (ao + ,~ ~xp ( -  OD")) 

XH \ "~H ] exp (b (r  n - -  r~)) (ao + al exp ((bT)n)) 

(__L? ~rt \ Tn ] exp ( - -  2b (T n - -  TnH)) (aOao ++ aXal eXPexp (-(- (bT)n))(bT) n) 

(__r_r 't 
X~ \ T,l ] 

/ In 7" ~ - ~  r,~ (~o + ~ 0n r~0 ~) 
%" {\ 1 - - ~ H :  | T (ao + al (ln T) n) 

{ lnT  ~/ : T~ ) ( a o + a ~ ( l n T )  n) 
~'g ~ ~"~'H I (,~'---. (C/o -~ a I (In T/~) r/') 

Xu (TIt - -  ao) 

T - -  ao 

~r~ ( aoTl~aoT_--ll ) T~T 

a t T -  1 : 
T~ In (T~dao) 

7' In (r/ao) 

(T.  - -  ao) In ((T~ - -  ao)/al) 
(T - -  ao) In ((7" - -  ao)/aO 

X~t (Tr~ - -  ao) In (at/(Tvt - -  ao)) 

(T - -  ao) tn (ai/(T - -  ao)) 

Xn (aoTr~- I) T~r In ((1 - -  aoTrr)/(alTu)) 
(aoT --  1) T In ((1 - -  aoT)/(alT)) 

L~(I - -  ~ r  r t In ( (a lTo) / (1  - -  aoTn)) 

(1 - -  aoT) T In ((alT)/(1 -- aoT)) 

Ln In (T/ao) 

n--I 
~.it ( T n - a ~  n 

T -- a~ "/ 

~,~T 2 (( I -- aoT~) /(aITH)) ~I --,0/,~ 

T~ ((I -- aoT)/(a~T)) (l-n)/n 

2 2 2  
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Fig. i. Recovery of a functional relation between temperature and a spa- 
tial coordinate: i) the result of using the traditional least-squares 
method: T = 1133 - 28.6r; 2) the result of minimizing the sum of squares 
of relative errors in measuring the temperature and the spatial coordi- 
nate: T = 1270 - 37.7r; 3) the exact dependence: T = 1214 - 34r. Points 
represent the data used to construct the temperature field. T in ~ r 
is in meters. 

Fig. 2. Temperature dependence of thermal conductivity: i) the result 
of using the traditional least-squares method: l(T) = 56/(1133 - T); 2) 
the result of minimizing the sum of squares of relative errors in temper- 
ature and spatial coordinate measurements: X(T) = 64/(1270 - T); 3) the 
exact dependence ~(T) = 61/(1214 - T). X, W/(m.K). 

Vg (a0(/), a(hD)/(2A0 ~ 1/0. 5 2 ~ ) = ~instr Tr. .... (~instr T~- ~instr r (3) 

We note that the relation, Eq. (3), corresponds to the generally accepted solution 
to the problem of finding the method for choosing the best approximation [9, i0]. 

If the number of gradient descent steps is exhausted, or the minimum of x(a0 ..... ak) 
is attained, or the condition in Eq. (3) is first violated, then the output values of a~/~ 
and a~ f) are stored together with the aforementioned root-mean-square relative errors, and 
a transition is made to the next pair of functions in Table i. At the final stage the 
calculated errors ~ are compared one at a time with 6inst r Tr" From all the functions 
only those for which the left-hand side of Eq. (3) is minimum are chosen. 

Using the discovered relation for the change of sample length with temperature, it 
is possible to set up an analytic expression for the thermal linear expansion coefficient 
~(T): 

~'(T) = (I/d (T))] dd/dT. ( 4 )  

T a b l e  2 shows  t h e  r e s u l t  o f  r e c o n s t r u c t i n g  a ( T )  w h i l e  a c c o u n t i n g  f o r  t h e  e r r o r  i n  m e a s u r i n g  
r i a n d  T i a s  w e l l  a s  f o r  t h e  c a s e  when o n l y  t h e  e r r o r  i n  m e a s u r i n g  t h e  t e m p e r a t u r e  i s  c o n -  
s i d e r e d .  

Analogous to the temperature field, the dependence of thermal conductivity X on tempera- 
ture T is recovered by employing the one-dimensional steady-state thermal conductivity 
model which is implemented in the cylinder method: 

[r~, (T) dT / dr] = O, ( 5 )  

g ( T . )  = g~. ( 6 )  

For each pair of functions T(r) and r(T), we selected from Table i a function X(T) which 
satisfies Eqs. (5) and (6). Functions X(T) found by this method are shown in Table 3. After 
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the analysis of the measured (ri, T i) values by comparing the calculated and instrumental 
errors as described above, a triplet of functions T(r), r(T), and A(T) that are connected 
by Eq. (5) and condition (6) are chosen. 

We also studied another method for recovering thermal conductivity. For this purpose 
we select a function r(T) that is the inverse of a function T(r) which satisfies Eq. (5) 
and is subject to the following boundary conditions: 

T (rl) = T1, T (rN) = Tw. ( 7 )  

H e r e ,  T H = T N. The s o u g h t  d e p e n d e n c e  h a s  t h e  f o r m  

T T~ 

r(T)----rNex p [(]n(rUrg) ) .i" ~(T)dT/~ ~,(T)dT]. 
T N T N 

(8) 

The function X(T) is initially assigned a linear k N + 2a0(T - TN), a power XN(T/T n) =0, 
an exponential k Nexp [( a0(T - TN)], or a logarithmic X N + a01n (T/T N) form which depends 
on one unknown parameter. With the help of Eq. (8), both the direct and inverse functions 
connecting the temperature and the spatial coordinate may be obtained for each numerated 
dependence. The unknown parameter a0 is found by minimizing the error, Eq. (2), and by sub- 
sequently checking the correspondence between the calculated and instrumental errors. 

Whereas the first algorithm minimizes with respect to all N measured (r i, T i) pairs, 
the second algorithm fixes (rl, T I) and (r N, T N) as boundary conditions; in fact, only N - 2 
points are used for the minimization. When, for example, only four thermocouples are ar- 
ranged on a sample, the class of desired functions X(T) narrows down to one-parameter func- 
tions, and fixing the boundaries of the temperature field is equivalent to interpolating 
at the boundaries without diminishing possible error jumps at these points. These facts 
attest to a deficiency of the latter algorithm. 

CONCLUSIONS 

The algorithms discussed in this work were implemented on a computer. The results of 
recovering the thermal linear expansion coefficient is shown in Table 2. Figure 1 shows 
the results of reconstructing functions T(r). Using these temperature fields, we calculated 
functions A(T) shown in Fig. 2. 

The developed codes for analyzing experimental data may be used in measuring thermal 
conductivity by the cylinder and the plate methods. 

NOTATION 

T, temperature; r, radial coordinate; %, thermal conductivity; ~, thermal linear expan- 
sion coefficient; N, the number of thermally-sensing elements in the measured sample; X H, 
thermal conductivity at temperature TH; d(T), the linear dimension of the investigated sam- 
ple at temperature T; a0,-, a~ , reconstruction parameters; 6inst r r, 6instr T, instrumental 
relative errors in the measurement of the spatial coordinate r and temperature T, respec- 
tively. 
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